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Abstract - The aim of the present work is to suggest that protein folding is a highly complex
process which generally cannot be simulated on digital computers. This limitation is not due
to the availability of computing ressources or exact force field parameters, as it has been
suggested previously; it is obviously impossible to quantify parameter(s) for any deterministic
algorithm with sufficient accuracy to describe the dynamics of protein folding. Molecular
dynamics simulations on crambin, a small protein with 46 amino acids whose three-
dimensional structure is known, suggest the native state to be a ’fixed attractor’. The results
show that any ab initio calculation of protein structure must fail if the folding process of a
protein is controlled by a kinetic process, i.e. when the native state is the kinetically accessible
minimum on the energy hyperspace but not the thermodynamically possible global minimum.

In this case only non-dynamical methods like pattern recognition or database processing
(knowledge-based approaches) can provide a reasonable three-dimensional structure. Novel
computational methods like genetic algorithms and neural network methods may be more
valuable for the design and description of protein structures than the traditional force-field

based algorithmic methods used to date. Knowledge-based modelling is therefore the most
promising method to date to deduce the structure of an unknown protein from the sequence
information solely.

INTRODUCTION

The protein folding problem is sometimes considered to be the *second part of the genetic code’’, defin-
ing the transition from the translated protein sequence to the native tertiary structure. The information required
for this process is intrinsically embedded in the protein sequence and the solvent conditions, preferrably the
conditions in vivo. A *folding matrix’, e.g. information from external sources, is not neccessary; however, it
has been suggested that chaperones may be of relevance for in vivo folding?.

All attempts to extract the information for the sequence-structure relationship have failed so far. The most
promising method to deduce the structure of an unknown protein is knowledge-based (’comparative’) modell-

ing?; here, the generation of structures is guided by known structures from homologous proteins.
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Other methods which have been published so far do either lack general applicability*, or the calculation
was directed by some knowledge of the native structure®. Also, for a correct description of functional process-
es of the protein, the precision for atom positions required to describe at least the active site and/or ligand-
binding parts must be better than 1 A.

In this work it is sugested that protein folding is a process of highly deterministic chaos, as it has been
shown for a multitude of natural events. The term *deterministic chaos’ was first suggested during investiga-
tions on climate events®; until today, many non-linear dynamical processes in nature have been shown to be
unpredictable, although the fundamental principles underlying those events are known’.

This is mainly due to the problem of describing initial conditions as well as parameters for an algorithm in
terms of our mathematics; in the axiomatic system of scientific explanation which is currently used, most
descriptions of events are based on decimal numbers with limited precision. On the pathways of dynamical
events, the errors intrinsically included in any decimal number will add up, until finally the error (that was
negligible in the beginning) will be of greater magnitude than the corresponding value.

One way to circumvent the algorithmic problem is to use a neural network (NN)3. This method is based
on the fact that patterns can be learned by special programs (usually in a training- and a recall-phase). The
basis for the learning are layers of *neurons’ with different weights (Csynaptic strength’). New patterns are
associated with the stored information.

Another new method in computer algebra is the genetic algorithm (GA). This development has its paral-
lels in biological evolution. GAs find the solution to a problem by analyzing the feedback to repeated attempts
of solutions. The attempts toward the solution are called genes - a sequence of information located in the
problem space. GA have no a priori knowledge of the problem space or the environmental conditions; this is
scanned during the evolution of the solution. Similarly, *fuzzy logic’ methods may circumvent the problem of
fixed rules for dynamics and energy minimization’.

MATERIALS AND METHODS

The protein used for the calculations described later is crambin, a small plant seed protein with 46 amino
acids from Crambe abyssinica. It has two short helical regions, two B-strands, and three disulfide bridges; it is
one of the smallest stable proteins with defined secondary structural elements whose three-dimensional struc-
ture is known so far. The resolution of the crystal structure is 1.0 A.

All molecular dynamics simulation described in this work were performed with the program DISCOVER
(Biosym Inc., San Diego, U.S.A.), release 2.6 for the IRIS 4D series (Silicon Graphics Inc., Mountain View,
U.S.A)), and DISCOVER release 2.5 for the CRAY Y-MP 4/432. Both machines were running under UNIX
derivates (IRIX 3.3.2 and UNICOS 5.2, respectively). The numerical differences for identical calculations
performed on both machines were determined to be below 0.5 %; these differences are based mainly on the
internal data representation and the processing methods used. A simulation of Crambin on the IRIS 4D/70,
equipped with a 12.5 MHz MIPS R3000 RISC processor, took about 12,000 seconds CPU time per picosec-
ond of simulation, whereas the CRAY Y-MP 4/432, equipped with 4 processors, took about 60-80 seconds
per simulated picosecond.

Simulations were performed mainly under in vacuo conditions. All hydrogens were present in the struc-
ture. The cutoff distance for intramolecular interactions between atoms was 18.0 A, with 2.0 A switching



Protein folding and deterministic chaos 377

distance. A leapfrog algorithm for the startup of the dynamics was used. Initial equilibrium of the dynamics
was performed over 5.0 ps; the simulations took 80 ps or 100 ps, respectively, with an underlying time step of
1 fs. Structures were collected each 0.1 ps.

For comparison reasons, one calculation was performed under identical coditions with respect to the
above calculations, but with explicit representation of water molecules. A solvent layer of 8.0 A around the
molecule was modelled; for the calculation, periodic boundary conditions were applied.

The denatured state was simulated by the following two methods: (1) the complete chain (except the
proline residues) was folded into a all-B-strand conformation, with ¢ and y angles of 120.0 degrees for each
amino acid, resulting in a long, stretched chain with maximum solvent accessibility. (2) Only the o-helical and
B-strand regions (e.g. residues 7 to 19, 23 to 30; 1 to 4, 32 to 35) were folded into the stretched conformation,
whereas the regions of turns and loops were kept fixed relative to the native state. This resulted in a more
compact starting conformation.

The simulations described under (2) were divided in two different parts: (a) the fixation of the turns was
released immediately after the equilibration time of the dynamics; (b) turns were kept fixed for the first 40 ps
of the dynamics. Under the latter conditions the chain has already collapsed to a compact structure before the
turns are allowed to decompose.

Beginning with the unfolded states described under (1), changes in the backbone dihedral angles of resi-
due Glu-23 (the central residue of the molecule) were introduced to examine the influence of small perturba-
tions on the resulting structure. An additional torsion of +30° and -60° for the ¢-angle of residue Glu-23 re-
sulted in three slightly different initial structures. All other angles in the three structures were identical.

RESULTS AND DISCUSSION

The simulations performed during this work show that the final state is reached after about 40 to 50 ps.
After this time a compact structure has emerged; the total energies of the structures are very similar to each
other and to the energy of the native state. It may be argued that protein folding takes place within seconds
instead of picoseconds. In fact, it cannot be ruled out that there may be major rearrangements of the structures
on a time scale 10° larger than the one used here, even under the same conditions. However, a close inspection
of the last 30 picoseconds of the simulations (Fig. 1) suggests that there is a high energy barrier (activation
energy) for a significant transition between the final four structures.

A comparison of the dynamic trajectories with explicit representation of water molecules and analogous
calculations in vacuo (data not shown) revealed that the resulting conformations and trajectories are complete-
ly different, as it is expected. Electrostatic shielding effects as well as solvent damping of the motions of the
protein atoms significantly delay the collapse of the chain to a compact globule. Intramolecular interactions
compete with molecule-solvent interactions; therefore, the analysis of the simulation gets more complex and
much more computer time is needed for a simulation.

It was not the aim of this work to investigate the influence of explicit solvent representation on molecular
dynamics simulations'® but to examine the effect of small structural perturbations on dynamical events under
identical conditions; therefore, the limitation to in vacuo conditions - whatever arguments exist contrary to
those calculations - was justifiable. Further work will include (aside from other improvements in model repre-
sentation) explicit water representation.
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Fig. 1: Total energy (kinetic and potential energy) during ’refolding’ simulation of crambin.

Fig. 1 demonstrates that the total energy of the system (including potential and kinetic energy) drops
during the simulated folding process. When a compact state is reached, only minor fluctuations of the energy
(and the structure, see Fig. 2) take place. The energy in the final state is identical within these fluctuation to
the native state of the molecule, e.g. they are energetically indistuingishable. This holds also true when several
terms of the energy (hydrogen bonding energy, van der Waals energy, Coulombic energy, dispersion energy)
are compared, respectively.

The structures, however, are divergent during the simulation; this is indicated in Fig. 2 and 3. Depending
on the initial structure, all three simulations result in structures which are far away from the native protein.
The starting conformation is about 40 A rms deviation away from the native (reference) conformation; all
structures end up about 8 to 10 A rms deviation from the native state. This describes the collapse of the
stretched chain to a folded, compact globule. Fig. 3 demonstrates that the evolution of the structures during the
collapse diverges; the final structures are about 8 to 10 A rms deviation away from each other.

A closer examination reveals that this is the maximal deviation that compact globular structures of the
given size can adopt. Therefore, the three final structures of the simulations and the native state represent four
completely different protein conformations.

Surprisingly, the simulated structures contain locally secondary-structure like regions of short o-helices
and B-sheets; native proteins show more regular local geometries, but the characteristic hydrogen bonding
patterns can be identified unambiguously. Unfortunately they are in different spatial regions in all structures.
An analysis of the formation of those secondary structures demonstrate that the decision for the local struc-
tures to occur origins between 10 ps and 25 ps; sidechain interactions of spatially neighboring amino acids do
have a great influence on the tendency for the structures to occur, although the final structures are stabilized
by hydrogen bonds of the protein backbones. The main reason for the distinct structures seem to be the sum of
occurences of subtle differences which occur by chance’.
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Fig. 2: Root mean square deviation of the three unfolded conformations of crambin to the native state.
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Fig. 3: Root mean square deviation of the three unfolded conformations of crambin relative to each other.
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CONCLUSIONS

The divergence of the trajectories of the molecules during the simulations may be considered to be mainly
dependend on the selected parameters and the algorithms used, but this seems not to be the case since the
results are independent from all guidelines and rules examined so far. The structures observed converge in
terms of the calculated enthalpic terms (potential energy), e.g. the native state is energetically indistuingisha-
ble from the computationally refolded molecules starting from three slightly different states; however, the
structures do not converge but diverge to completely different states.

This does in no case proof, of course, that for all starting conditions and for all deterministic algorithms
which are possible the results are similarly discouraging. Especially it must be taken into account that the
underlying basis of the force fields and the Newronian dynamics which is used are primitive mechanical
models and are definitely too simple to be reliable for the description of a complex process such as the simula-
tion of protein folding!'.

On the other hand, there is no imminent reason to believe that our current axiomatic system of mathemat-
ics and physics does really provide a solution to the protein folding problem. The existence of a unique rela-
tionship between sequence and structure of a protein does not necessarily imply that this relationship can be
expressed in our mathematical or physical axiomatic system; this holds true for several multi-body problems
of modern science.

Now, what would be the benefit of the analogous formulation of the protein folding problem to previously
described systems of deterministic chaos? One achievement is the classification of structure calculation
methods which have been published recently. A graphical standard procedure is the description of dynamical
processes via bifurcation graphs; true bifurcation graphs are characterized by the Feigenbaum constant, Some
ideas, e.g. the module method, may be shown to work only since they circumvent the information mass by
reducing the folding process to a section of the conformational hyperspace. Others, e.g. the built-up-proce-
dure, starts from a completely different point in the bifurcation graph and thus from another point in hyper-
space. Both methods, however, lack a general applicability since they reduce conformational information
without providing the required energy.

There are properties describing and characterizing chaotic systems which may also be useful for the
judgement of the value of new methods. The Lyapunov-exponent characterizes the nature of the ’final state’
(attractor) of the chaotic system; if the exponent is negative, the attractor for the trajectories is a fixed point in
the phase space of conformations (static model, e.g. crystal structure). If it is zero, then the native conforma-
tion would be in equilibrium between several transition states (dynamic model, e.g. equivalent substates of
hemoglobin); finally, a positive Lyapunov-exponent would characterize a ’strange attractor’ which has no
known equivalent in protein structure theory so far.

Also, the chaotic dimension is a valuable information for the description of dynamical processes. This
parameter establishes the conformational space for a molecule to fold; it is equivalent to the so-called confor-
mational hyperspace. It would be of great interest to find out correlations between the chaotic dimension and
statistical parameters (for example, the size of the protein, or amino acid composition). Even the order of
magnitude for this value is still controversal. The fractal index'*'® may be used to characterize the softness of
the surface of proteins; chemical reactivity is often related with a rough surface!®. Also, methods have been
developed that relate protein C,-atoms and self-affine fractal surfaces!S. The theory of renormalization
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groups connects physical forces on completely different scales; this is useful for comparing thermo-
dynamical (experimental) results with molecular structure calculations!,

Bifurcation diagrams are helpful schemes for the description of dynamical trajectories and parameter
dependence of processes and may be of value for the description of transition states of the folding or
intermediate states which are detected by experimental methods. The folding pathway described via
bifurcation diagrams are not directly related to kinetical schemes for the refolding of proteins which are
gained by experiments; these schemes are based on thermodynamical criteria rather than molecular-
structural data and thus describe the properties of an ensemble of molecules, not the fate of a single
molecule. Now, bifurcation diagrams do provide a simple possibility for the description of multiple protein
folding pathways. It has been observed that the refolding pathway and the occurrence of the observable
intermediates (in a thermodynamical sense these intermediates are an ensemble of molecules exhibiting the
same behavior of a measurable parameter) may be different when refolding starts from different conditions.
Finding out how the Feigenbaum constant can be derived from the experimental values of refolding from
different denatured states should provide us with a better understanding of the folding problem.

In a recent work, El Nashie and Kapitaniak found that the distinction between chaotic and strange
nonchaotic behavior may be performed by the Lyapunov exponent distribution of symbolic dynamic
simulations!’. The authors stress the similarity of the experimental results from nucleic acids research and
chaotic models of solitons in elastic strings.

The current work identifies analogous facts between known highly chaotic systems and the protein
folding problem. However, at the current state we cannot rule out that the description in terms of the chaos
theory is incomplete, even if there is evidence. The general applicability of the methods described for the
molecular dynamics simulation is definitely inadequate. However, to my knowledge there is no
contradiction to experimental or computational results in the literature. On the other hand, tools like fractal
indices, chaotic dimensions, bifurcation diagrams, and Lyapunov-exponents may be of value for protein
structure prediction.

If protein folding can be identified unambiguously as a process of deterministic chaos, then this would
imply that any ab initio method must fail when the native state of a protein is the kinetically accessible
minimum but not the thermodynamically possible minimum intrinsically contained in the amino acid chain.
In this case, knowledge-based methods like homology modelling, genetic algorithms, neural network
methods or other pattern recognition techniques are the only way to calculate protein structure from
sequence. Therefore, future work should concentrate on those methods rather than the improvement of
force field parameters or force field algorithms!8.19,
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